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VELOCITY DISTRIBUTIONS ON TWO-DIMENSIONAL WING-DUCT INLETS
BY CONFORMAL MAPPING

By W. PERLandH. E. MOSES

SUMMARY

The conjormal-mapping method oj the Cartesian mapp”ng
function is applied to ,the determination.oj the celocity distri-
bution on arbita~ tuwdimensional duct-inlet shapes such as
are used in w“ng installations. An idealized-formof the actual
wingduct inlet i8 ana@ed. The e$ects oj leading-edgestagger,
inlet-retocity ratio, and section Jijtcoeji%ienton the celom”tydis-
tribution are included in the analysis. ATumerictdexamples
are gicen and, in part, compared m“thexpen”menta[data.

INTRODUCTION

Inlet contours for wingduct i.n@lations, such w those
used to conduct cooIing air to engineB,are generalIy designed
on w more empirical basis than airfoil sections because the
geometry of a wingduct inlet, and hence the determination
of its veIocit.y distribution, is more compIex than that of an
airfoil section. By means of the conformal-mapping-method
of reference 1, however, the ideal incompwsible velocity
distribution over two-dimensional wingduct inlets for arbi-
trary lift coefficients can be calculated with about the same
labor as in the corresponding calculation for an isolated
airfoiL

This method was applied to an arbitrary tmo-dimensiord
wingduct-irdet section at the ATACA Clevehmd Iaboratmy
in 1945 and the application is presented herein. The theory
is illustrated by numerical ~~amplee, which are, in pm-t,
compared with experimental data.

ANALYSIS
SYMBOLS

The more important symbols used in the paper are hated
here. All velocities are expressed as fractions of the free-
stream velocity; that is, the free-stream velocity is taken
as unity.

c chord of duct-idet section
c~ section lift coefi?cient
d horizontal distance between leading edgea of duct

inlet
h vertical distance between

inlet
r stagger ratio in f-plane
8 stagger ratio d/hin z-plane

leading edges of duct

0 velocity on surface of duct inlet
~Daa velocity Mnitely far inside duct
V* veIocity at duct inIet
P plane of circle
z plane of duct-inlet section (x+iy)
r pIane of chord IiLW (&+iq)

‘,
‘,
‘- Resis tame

[a]

THE CONFOR.MAL TRANSFORMATION

The actuaI two-dimensional wing-duct contlgumtiou of. _
figure 1(a) is replaced by the contour shown in figure 1(b).
The two changes made in the originaI wmfiguration are (a) ‘“
removal of the internal flow resistante, and (b) replacement
of the streamlines A’6’ and C’D’ by the paraIIeI, straight,
rigid boundaries AB and CD. Change (a) results in a flow

field of constant total pressure, and change (b) in a simpIy
cmmected flow field. The mmlysia is thereby considerably
simplified. Both effects associated with the repIaced features,
nameIy, variable inlet-veIocity ratio and angle of attack,
respectively, can be adequately represented in the flow
function for the simplified configuration. For conventional
wing-duct installations, the region of intereat at the inlet, as
regards velocity distribution, is suiliciently far from the
region in which changes (a) and (b) were made that their
inftuence on the required velocity distributions is negligible.
(See section Illustrative Examples.)
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The simplified duct-inlet contour in the -plane is now ccm-.
formaIIy mapped onto the staggered semi-i~_niteparaIM
straight lines, QAB and PCD, in the..r-plane (fig. 1 (b)).
This mapping is aecompIishcd by the Cartesian mapping
function (.C.MF),defined as the vector distance 2– t between.
conformably correspondkg points in the z- and ~-planes
(reference I); thus

2—f=(z—g)+i@—?J

I
(1)

=Az+iAy

The calculation of. the CMF is carried out by considering it
as a function of the central anglo @ of the p-plane circle into
which the f-plane contour oan be conformably mapped by a
known transformation. Inasmuch as z- ~is regular on and
outside of the 2- or r-plane contours, by the conformal
transformation from r to p it k. also regular on and outside
of the p-plane circle. The real and imaginary parts of the
CMF on-the circle it.selfare therefore rel~ted by

The conformal transformation of the. t-plane,

(2)

(3)

staggered
semi-infinite @rallel lines; into the #-plane- circle is carried
out in two stew. In the first stkma Schwarz-Christoffel
transformatioti‘takes the ~-plane plygon into the real axis
of a t-plane such that the upper-half t-plane corresponds to
the ~-plane. With. the correspondencwkboundary points
indicated in figure 2, this transformation is (reference 2):

w-l I

t
2 I

I
t-plane

! .? 3 4 I
-aY I a

U1 ~z U,.o U4 ~1

e.4 p-pfane

I
3 ?1

2
FIftT:XE2.-Conformalrdatlon oft-, t-, and p-planes.

[ 1~=cl ;–(u2+u4)t+ugu, Iog, t -i-c, (5)

The six constants given”by M, u, (real), and C,, C2(complex)
are determined for the orientation and the male indicatd in
figure 2 by the six conditions:

(a) Cl real (staggered liuea horizontal)
(b) a= 1, scaIe factor in ~-plane
(c) r equals desired stagger in (-pIane, f(w) =r+ r– i
(d) u,=- 1, scaIe.fac.tor in kplane
(e) upper leading edge in t-pIane at point (r, O) or

-- t(u,) = T (two conditions)

The co~tant ~. is inserted in condition (e) in order to
locate the leading edge of the upper inIeLsection tangent.
to the g-axis. By use of the foregoing conditions, equation (5)
reduces to

The quantity m= U4is the foIIowing function of t,hestagger
ratio r:

()rr=loge m+;m+ (7)

Equation (7) is plot teclin figure 3.
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The second step of the desired transformation from f top
consists in mapping the upper-half t-plane onto the region
outside of the p-plane unit circle ‘by a bilinear transformation,
here taken as

(P)~=~P*
–1

(8)

The correspondence of points for equation “(8) is indicated
in figure 2. The use of other bilinear transformations is
discussed in the section Illustrative “Examples.

Equations (l), (6),and (8) constitute the cmformal trans-
formation from the region around the duct-inlet section in
the physical z-plane to the region outside the unit circIe p-
plane. These equations, -withp=ef$, give for conformably
corresponding points on the boundaries , .

t=cot ;

x=g+Ax

(
*=: 1~ ;Cot; —1

)[ (
ml )1~~cotg —l +1 —

+ log,: cot: +Ar(@) +7

(9)

(lo)

$1=1%1(0) O<@<~ upper-duct inlet section
}

(11)

y=Afl(@ –1 ~<4<2~ lower-duct inlet section J

The leading-edge points of the upperduct- and Iower-
duct-inlet sections may be defined as the upstream points of
tangency of normals from the “chord” lines OA and RC
with the duct-inlet contoum (fig. 1 (b)). These points may
be found as functions of d by minimizing z with respect to 4
in equation (10). The resulting condition is

dA. (co’$-m)(Co’:+’)~=
frmsindl

(12)

VELOCITY DISTRIBUTION

The velocity distribution on the duct-inlet section is~ven
by

‘= ‘z (13)

in which the complex ptential W is

(14)

The term f represents a uniform flow velocity to the right, of
unit magnitude in the ~-plane, and gives a free-stream veloc-

A
ity of unity in the physical plane. The term ; t represents

a uniform flow in the t-planeand corresponds to a circulatory
flow around the duct- in.Iet in the physical plane. This
term gives the effect of angle of attack on the physical duct-
inlet section, ahhough the geometric angle of attack of the
section analyzed must remain zero because of its semi-

infinite extent. The term ~ log,” t represents the flow due

to a source at the ori@ in the t-plane and gives the desired
inlet veIocity into the duct in the physical plane.

The quantitative effect of the parametem A and B in the
physical plane is determined by evacuation of the complex
veIocitv.

where, by equation (6),

and, because z—~ is
circIe,

dt
~~=(t–m~~+l) (16) “““

regular on and outside of the p-plane -

(17)
—

Infinitely far inside the duct in the physical plane, the corre-
spondence of points is: z= m, r= m by equation (17), t=O
by equation (6), and p= –1 by equation (8). Hence, at this

dt 1 dt
point, ~= 1 by equation (18), ~=0, and ~ ~= –r by equa-

tion (16); and equation (15) givm for the velocity ~DaIinfi-
nitely fm inside the duct

The velocity distribution on the inner wall of the duct-irdet
section becomes almost constant a short,distante behind the
leading edge. (See section Illustrative Examples.] The inlet
veIocity Pais defined assthis asymptotic value. The “inletV*
locity V=ti be difkent from a=e if the height at the inlet is
different from the height (unity) Mnitely far inside the duct.
Idln.itely far upstreamof the duct-inlet section the correspond-
ence of points is: z=— =, ~=— ~, t=~~, and P=l, and

dt 1dt
consequently ~= 1, *==?* =0. This rwdt holds infiit eIy

far outside the duct in any direction. Hence, the free-stream
velocity is by equation (15), unity.

The quantity A may be evaluated either as a function of
the stagnation-point locations on the duct Met or ss a fWction
of a suitably defined lift coefficient. In terms of the stagna-

tion points, given by ‘~=0 in equation (15), and with equa-

tions (16) and (9),

(m–l) cot *–cot’ *+m(l–B)
ii= =(20)

mco’4!t , ----
2

cot &,_–[l+nl(A-1)]+ @G’m(A-1)1’+47n(l -B) ~21)
2– 2 --

. .

For a given A (and 11)equation (21) is a quadratic equation
for the two stagnation-point locations. When quantity”~ is
alternatively regarded as a function of lift coefficient cl, thq
section lift coefficient is defined in terms of circulation and
chord by the vd-knowD idtted-airfoil relation.
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2r~l=; .:-- -. --- (22)

The chord c is defined as the cme.r-allJength of the .wkg-
duct-inlet section in the free-stream direction (O E in
fig. 1(b)), and the cticulation 17,as the line integral of the
veIocit,y over the circuit CFG H K M AEC around th~ wing-
duct installation. This circulation can be evaluated as the
sum of the potential diflerenc.eover. the.lo.wer surface @~—@c,
and the potential difference over the upper surface @~—@~.
The difference of potentia~ over the .patha G H and EC is
negIected because the veIocity is here approximately per-
pendicular to the paLh. Hence, by equation (14) .-

and

r=(@~-@H)+(@~—@c)

r= (&-&) – (&Ii-E6)-+~ [(tE–tC)-(fH–~G)]+

()t&: log, —
tHtc

(23)

Finally, when equation (23) is solved for A, and I’ is expressed
in terms of c1by equation (22) with c=z~,

[
7$ $ XE—(tE—EC)+ (gH—&G)

A=
(~E–fC)L(tH-tG) =--(24)

The quantities z, f, and t at the various points indicated in
equation (24) are given in terms of the corresponding central
angle @ by equationa (9) and (1!)). The variom. @ values
are known when the conformal transformation of the duct
irdethas been carried out.

For a CMF AZ(4), Ay(@), stagger. ggwstant w, and..the
constants A and B correspondkg to, the hft coficient and
the inIet-velocity ratio, the velocity distribution on the
duct-inlet contour is given by the abs@ute mag@tude of
dW/dz on the boundary. On the boundary, p=e{$,

d(z–f)$=l+T ““’:

}

(25)

dz d(Ax+iAy) dd dt
~=1+ dd Z%

Substitution of equations (9), (16), and (25) in equation (15)
yields for the velocity distribution on. the duct-inlet section

,. (26)

PBOCEDURE FOR CALCULATION OF CMF

The calculation of the ClIF. Ax(d), Ay(@), and slogger
constant m for a given duct-inlet section may be carried OUL
by a process of successive approximations similar to IIMLof
reference 1. The steps are outlined as follows:

1. The duct-inlet section is drawn in normal form
(fig. 1 (h)). Poi@ O is the origin and the scale is such tha.~
the normal distance between the chord lines OA and RC is
unity. The stagger s=d/h of the d~t inlet. is, in general,
different from the stagger r of the c~~ordlinys.

2. A set of abscissasz(d) is calculated for a standard SCL
of values of @ by equation (10). The M(o) and r may be
that ofa previous example or, at worst, equal to zwo. - TIN:
value of.m may be taken from figure”3 for ~=s.

3. T~crdinatea y of the duct-inlet contour corresponding
to the abscissas x of step 2 are measured. The funct,ion
Ay(@) is thereby determined (equation (11)).

4. The function Ax(@) is calculated from Ay(#) by equti-
tion (2).

5. T@ functions Ax(#) of step 4, Ay(#) of step 3, and m
of step 2 constitute by equations (10) and (11] a duct-inh’L
section” of which the difference in abscissas between tho
leading edges is, in general, other than that specified. The
constant m is therefore adjuste.d to make Ma diflercncc
equal tQ the specified wdue. ‘h this end equation (12)
(corxe:pgnding to the values d, and +, for the two extrcmit.its)
and the equation for the diflerenco d in tho lmding-edge
absciss~s

z(m, dl)–x(m,b)=d (27)

obtained from equation (1O), can be aolvcd simultancousIy
for 41, 6, and m. A more convenient procedure is one of
iteration”. Initial values ~, and b for mininium z arc
graphically obtained by pIotting equation (10) in tho ncrcs-
sary re~ons. A value of m is then obtained from cquation(2~).
With this vaIue of m, values of 41 and & arc again
graphically found for minimum z by equation (10). The
process.is continued until +1, 42, and m do not change ap-
preciably in successive calculations. Finally, a conaLanLr
is so chosen that z(@J =0. The derived inlet. section is
now in normal form.

6. The values of m and ~ derived in step 5 and Ax(I$) and
Ay(I#J)of steps 4 ancl 3 yieId a sh~pe by equations (10) and
(11), which can be compared with the given one, If Lhe
agreemdnt is not sufficiently close, steps 3 to 5 am repealed,

7. The velocity distribution is obtained by substitution

dAx all(l ~Ay of tl,e ~l,al
of the finaI m and the derivatives Z d(p

CM? imequation (26). The value of B is chosen to produco
the desbed inlet velocity (the veIocity given by equation (26)
on the inside.walls of. the duct-inlet .sec~ion). The due
of A-.Lchosen to .lcmte Lhe stagnation points in M
desired .rnanner(equation (21)) or for a desired nominal lift
coefficient (equation (24)).

The inverse probIem, namely, the cdculat ion of tbo &mt-
inlet section to produce a. prescribed velocity distribution,
may ba treated by the methods given in references 1 rmd 3.
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ILLUSTRATIVE EXAMPLES

As a first application of t@ theory, the symmetrical wing-
duct installation (m= 1.0), on which pressure distributions
were measured in reference 4 (shape 9), was analyzed. The
instrdlation is shown in figure 4 and the ordinates are listed
in table I. The trailing-edge portions -were actually flaps

FIGLW.A-SpnmetrfcaI dtwt-frdetWIon (reference&SIW.P?9). rA.1.O.

by which the inlet velocity was varied. The scale used for
the calculation w-assuch that the distance between trailing
edges was unity, as assumed in the theory. h evenly
spaced set of 48 #-values was taken of which only 24 viere
actuaIIy used because of the symmetry. Of these 24 values,
21 were included in the front 8 percent of the chord. This
portion of the duct inlet was therefore the portion effectively
analyzed. The leading-edge portion ia plotted in figure 5
to a scale such that the vertical distance between the leading
edges, the entrance height h, is unity.
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Ffgure6.-Leading edgeofsyrnmetrtge.1dnct-frdetsectionwith 8=0and m- 1.0.

The CMF obtained ~.fter four approximations (which
produced coincidence of the specified shape and the derived
shape) is listed in table II and plotted in figure 6. In the
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first two appro.simations, the airfoil was drawn to an abscissa
scale of 25 inches for the chord and had an ordinate scale
four times the abscissa scale. The last two appro.ximations
were made for the airfoil drawn to a swde such that the
chord length was 100 inches; the ordinate soale was the same
M the abscissa scale. The values of & were computed, for
the most part, by the method of numerical evaluation of
conjugate functions developed in appendix C of reference 5.
Near 0° and 180°, because of the rapid variation of Ay(+)
in these regions (fig. 6), AX w-as obtained by plotting the
integrancl of equation (2) and graphical integration. The
values of the CMF graphically obtained are indicatecl in
table II. The velocity distributions, also listed in table II,
were calculated for inlet-velocity ratios amof O, 0.5, and 1.0
and for nominal lift coefficients of O, 0.3, 0.6, 0.9, and me
shown in figure 7. The derivatives of the CM?’ used in
calculating the -relocity distribution were obtained by graph-
ical measurement from the CMF.

The velocity distribution for cl=O and vm=O.5at is-
factortiy checked that experimentally obt ained in reference 4
for cl=O and v,= O.473 (fig. 7(c)). The reason for the
discrepancy between theoretical and ~~perimental irdet-
velocity ratios at which the velocity distributions. agreed is
not clear. Possible reasons are the changes in downstream
shape required by the analysis and a d~erence in the method
of specification of idet-velocity ratio. The theoretical inlet
velocity o. has been defined as the constant due approached
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by the velocity on the vd of the duct at a short distance
behind the leading edge. The experimental determination
of the inlet-velocity ratio in reference 4 was not made
entirely clear.

The velocity distributions for the c1 vahm 0.3 and 0.6 “”
were also compared with the experimental data of reference 6
obtained for the same duct-inlet section at various angles of
attack at a Mach number of 0.20. The comparison (given
in figs. 7 (c) and 7 (d)), indicates the validity of the theoretical
analysis, particularly of the derivation of the nominal section
lift coefficient cl.

The feature of the velocity distribution shown in figure 7
that, should be particularly noted is the closeness to the
leading edge (well within the 8-percent of the chord length
that was studied) at vihich the great-t changes in velocity
distribution occur as a rffluh of a change in oper~ting con-
ditions v=or cl. This fact justifies and requir= the analysis
of a region very close to the kilet, that is, the concentration .-
of the chosen set of ~-points close to the inlet.

In order to illustrate the use of the theory for the staggered
case, m# 1.0, the CMF Ar(@) and Ay(@) for the symmetrical
Met was used with the m-values 1.5 and 2.0.” These shapes
and velocities are shown in f@es 8 to 11 and are given in
tables III and IV, respectively. In the graphs of the duct
inlets, the ordinates have been so adjusted that the upper and
lower leading edges are at 0.5 and – 0.5, respectively. Al-
though the derived shapes are different from the -original
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FlguTe8.—WIIM edgeofnonwmmetrkal dnct-fnkt sectionwith s-IJ.W and m“ML
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rmstwggercdone, evidently the eflect of stagger is LOreduce
the velocity peaks for positive lift coefficicnti~

Wh& a more highly staggered inlet wus clerivcd for
m= 3;0 by the foregoing method, the upper contour of tha
resulting inlet was found to be.excessively thick. The points in
the.physical plane corresponding t.oAx(4), Ay(@), rindm=3.O
-were jjierefore rearranged by using the same Ar mnd Ay,
regarded, however, as functions of 8, with O rclutcd 10 4
by the bilinear transformation (see appendix B of rcfcrencc 5)

..

in which, on the p- and #’-plane unit
to the duct-inlet contour,

p–~f~, p’=ei6

.- (28)

ci@ea corrmponding

(29)

The choice n= 1.5 produced tho shape shown in figure j 2.
The oi-dinatesare listed in table V. It should l.wnoted thaL
the use of an au-iliary biIinear transformation (equation (29),
for excgnple) provides a very flexible and convcrticnt
methgd of clistributing a given number of mapping points
in the” opt.imurn manner. The auxiliary bilincm ~rans-
formation may also.be used to smooth out a shaiply pmdwd
function of @ to make its conjugate more eas~y calculal$~. -_
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CONFORMAL MAPPING OF LEADmG-EDGE REGIONS

The requirement that the velocity distribution need. be
accurately known only near the leading edges permitted the
great simplification h the mapping consisting ip replacement -”
of the doubly connected region by a simply cm.netted region.
The modification of the contour shape far behind the leading
edge did not appreciably alter the velocity distribution at the
leading edges. Corresponding simp1i6cationscan be effected
in other problems involving conforrnal mapp~ of aerody-
namic shapes where only the leading-edge region is of interest.

Thti, for example, the leading-edge region of an isolated
airfoil can be regarded as joining a semi-irdnite shape, as
indicated in figure 13. The mapping of such a contour into
a circle is quite simple. The leading-edge contour, z-p~arie,
is mapped onto a semi-infinite chord line, ~-plane, by the
CMF

z—~=Ax+iAy= (z—~)+i(y-~) (30)

The semi-influite chord line is mapped onto an inilnite
straight line, t-plane, by

~=tz (31)
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and, in turn, the t-plane contour is mapped onto a unit circle
by a bilinear transformation, such as

(32)

on the uni~ tide p=et~, equations (30) to (32) give for the
coordinates x and y of theleading-edge contour in the physical
plane

y= Ay(~) (34)

The mapping of the leading-edge contour by equations (33)
and (34) involves little more than the calcuIat,ion of
conjugate.

The velocity &ribution is obtained fro~ the “complex
potential .

W=”r+ll~ : .: . -“(35)

in which the term ~ represents the uniform free-stream flow
and the term At a circulatory flow around the leading edge.
On the leading-edge eontouq .’~he velocity distribution
ldW/dzl becomes. . . .

( ,. )l+~tan$ c0t$csc2$ -
~=.

dr”-@c’’’%$Y+(%Y”””””””” ””’”-’(3Q

A similardevelopment can be made for a cmca.deof leading-
edge regions, which bears the samo relation to a cascade
of airfoils as the leading-edge region just treated bears to
the isolated airfoil.

SAW-TOOTH FUNCTION AS INITIAL APPROXIMATION

M ‘de mapping of semi-infinite contours, it. may bc re-
quired; or it may be simpIer, to consider a contour for whirh
the thickness at infinity is finite, as indicated in figure 13.
The ordinate function Ay(@)will in this case h discontinuous
at tha wdue of @corresponding Lothe point tit infinity on the
physical-plane contour. The calcuhttion of the Chl 1? for
such a contour will be simplified if the ~artcsia.n mtipping
function Ax+iAy is considered as the sum of two componcn~
Cartesian mapping functions Alx+iA,y and A2z+iA2y, of
which Alz+iA1y is anaIyticaHy known and represents a
contour with the same thickness a~ infinity.

Thus, if the thickness at infinity of the contour in tJN~
physic~l plane is T, the “first harmonic” -- ‘ ~‘’ “ J”
(fig. 14 .“

Aly(+) =$ (f–~)

will yield a shape with this thickness.
conjuggte to Al~(~) maybe simpIy obtained from Lhointegral
relation for the conjugate derivative (equation (C3) of
reference 5)

saiv-toom Iunc[ lon

(37}

The function A,z(@)

Substitution of equation (37) in equation (38) am-lintegration
(using integration by parts) yields

.
(39)

which by integration gives for Alx

The ordinate function derivative is evidently

dA,y
-i&r 2;

=-— .. .

)

,.-Fke + harmonic p..~:. - Seco@ harmonic

‘. ‘..
“* “.,< ‘.

‘..
‘.. +....

‘. ‘.. p-oxis

o , ‘.. r:‘. ‘.. ,
‘. ,

‘.. :
‘. :‘. .,.

FIWRE14.-eaw-toothoWnate funct[ons.
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The CMF for a “second harmonic” saw tooth (fig. 14)
corresponding to a duct-inlet section with thicknes. T (of
each component contour) at intinity may be obtained from
that of the first harmonic saw--tooth function by replacing
@/2 in equations (37), (39), and (40) by @ and by doubling
the derivatives. Thus, for the second harmooic saw-tooth
function *

dA,y T
@-=-;

AIX=; log. Sill1#1

dA,x T
—=; cot #ldd

(42)

(43)

(44)

(45)

The duct-Met shapes corresponding to the second harmonic
saw-tooth CMF have been calculated by equations (10) and
(11) with m= 1.0 (no stagger) @ for T=O.1, 0.2, and 0.3.
The contours are shown in figure 15. For these shapes, the
velocity in6nitely far inaide the duct is, by equations (43),
(45), and (26) with @=r,

.2 r

./ -
0=3

Vo
.}

..

-.1 -

-2’ ! I I r I
.[ .2 .3 “.4 .5

1–B
‘D-=1–2’ (46)

which, when compared with equation (19), shows the effect
of narrowing the duct, ‘at infinity.
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TABLE I—ORDINATES OF SYMMETRICAL DUCT IN LET
[Reference4, sheme9]
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TABLE H-ORDINATES AND VELOCITY DISTRIBUTIONS FOR SYMMETRICAL DUCT INLET WITH s=O AND m= LO
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TABLE III-ORDINATES AND VELOCITY DIS-
TRIBUTIONS FOR NONSYMhlETRICAL DUCT

TABLE IV—ORDINATES AND VELOCITY DE%
TFUBUTIONS FOR NONSYMMETRICAL DUCT

TABLE V-OR DIN A’~IM 014” NON-
SYMMTtl’RICAI, D U Cl’ [N TJE7’. ..- -- —--— . --- . ---
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